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 Abstract - FID Fuzzy Decision Tree has been introduced in 
1996. It is a classification system, implementing the popular and 
efficient recursive partitioning technique of decision trees, while 
combining fuzzy representation and approximate reasoning for 
dealing with noise and language uncertainty. Since its 
introduction, various extensions have been proposed, 
implemented, and presented, with the most recent revision 
FID3.4 just released. This paper illustrates its processing using 
a standard example.  
 

I. INTRODUCTION 

 Today, computer programs extracting knowledge from 
data successfully attempt alleviate the knowledge engineering 
bottleneck problem [1]. Supervised classification programs 
extract some form of knowledge from training data with 
known classifications. The knowledge is often in the form of 
an explicit data structure with some inference method. Among 
such systems, those building decision trees are very popular, 
due to their conformity, comprehensibility, accuracy, and low 
complexity [9][11]. 
 Decision trees implement the so called recursive 
portioning algorithm, which is a data-driven technique for 
building tree-based knowledge models [9]. The algorithm 
starts with all the training data in the root node, and it 
recursively selects a test, based on the available attributes, to 
split the node. The selected test is the one that maximizes 
some measure, such as the information gain [9][11].  The 
splitting stops based on a number of potential criteria, such as 
exhausted test attributes or exhausted data samples, and just to 
avoid overspecialization [11]. The tree can subsequently be 
visualized to provide meaningful comprehensible information 
about the domain, or it can be used for classification when 
coupled with a simple inference procedure – match a new 
datum against the tree, select the leaf that matches it, and 
report the decision associated with that leaf.  

Neural networks are as attractive for data classification. 
They provide more robust behavior, but lack similar levels of 
comprehensibility [2]. A fuzzy approach attempts to bridge 
the gap between incomprehensible quantitative processing and 
comprehensible qualitative processing. Fuzzy sets provide 
basis for fuzzy representation [3]. Fuzzy sets and fuzzy logic 
allow the modeling of language-related uncertainties, while 
providing a symbolic framework for knowledge comprehensi-
bility [4][5][6]. In fuzzy rule-based systems, the symbolic 
rules provide for ease of understanding and/or transfer of 
high-level knowledge, while the fuzzy sets, along with fuzzy 
logic and approximate reasoning methods, provide the ability 

to model fine knowledge details [6]. Thus fuzzy 
representation provides means for dealing with problems of 
uncertainty, noise, and inexact data [7]. It has been 
successfully applied to problems in many industrial areas [8]. 

Fuzzy Decision Tree (FID) combines fuzzy 
representation, and its approximate reasoning, with symbolic 
decision trees. As such, they provide for handling of language 
related uncertainty, noise, missing or faulty features, robust 
behavior, while also providing comprehensible knowledge 
interpretation. FID has three major components: one for 
partitioning continuous attributes, one for building an explicit 
tree, and one for knowledge inference from the tree. In this 
paper, we illustrate these components, along with some 
additional capabilities.  

 
II. DATA 

  
Fig. 1 The original function. 
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Fig. 2 Partitions of variables X and Y. 

 
For illustration, we are using the function z = -sin(xy)+1 

taken from [18]. Having a function with only 2 independent 
attributes allows us to graphically illustrate the acquired 
knowledge. The X and Y domains are 0..pi. Unless otherwise 
noted, the independent attributes and the class (Z) are 
partitioned as illustrated in Fig. 2 (normalized scale). The 
training is performed with data from the 11 x 11 grid, while 
the acquired knowledge is generated by sampling the 101x101 



grid. Of course, the acquired knowledge depends on both the 
generated tree and the inference method used for testing – 
several inferences are illustrated.  
 

III. FUZZY SETS, NORMS, AND THE INPUT LANGUAGE 

In classical set theory, given some universe of discourse, 
an element either belongs to a set or it does not. Such sets can 
be described with binary characteristic functions. However, in 
the real world there are many sets for which it is difficult or 
even impossible to determine if an element belongs to such 
sets. For example, this information might not be available, or 
the set itself may be ambiguous due to the linguistic 
interpretation of its label. Fuzzy sets have been proposed to 
deal with such cases. A fuzzy set is represented by linguistic 
label and a membership function onto the real interval [12]. 
The partitions of Fig. 2 are examples of triangular fuzzy sets. 
In the figure, an element with the normalized value 0.05 
would have memberships in both two leftmost sets equal to ½.  

Similar to the basic operations of union, intersection, and 
complement defined in classical set theory (which can all be 
defined with the characteristic function only), such operations 
are defined for fuzzy sets. Functions used to interpret 
intersection are denoted as T-norms, and functions for union 
are denoted as S-norms. Originally proposed by Zadeh, min 
and max operators for intersection and union, respectively, 
define the most optimistic and the most pessimistic norms for 
the two cases.  
 

  
Fig. 3 Response curve under the minimum norm 

  
Fig. 4 Response curve under the bounded product  norm 

 
A decision tree has some attribute tested in each of its 

internal nodes, and has classification decisions associated with 
the leaves. The test in a given node is interpreted as a fuzzy 
restriction, and its satisfaction is computed based on the 
attribute value of a sample. When moving down a path, the 
degrees of satisfaction of the fuzzy restrictions are 

accumulated according to the fuzzy T-norms. In FID, 
minimum, product, bounded product and drastic product can 
be selected. There is also the ‘best’ option, which chooses the 
best of the above. Fig. 3 and Fig. 4 illustrate the difference 
between two different T-norms.  

FID processes data expressed with a mixture of nominal 
and continuous attributes. The continuous attributes can be 
partitioned or not, and some features can be missing. For 
example, assuming attributes Income (partitioned, with 
linguistic labels Low, Medium, High), Employment (expressed 
as the number of hours per week), nominal Sex, and 
classification for Credit (score 0-100, partitioned with three 
labels No, Maybe, Yes), the following are examples of 
possible training data: 
John: Income=12500, Employment=24, Sex=M, Credit=No 
Susan: Income=Medium, Employment=?, Sex=F, Credit=25 
 

IV. INFERENCES 

The tree is built for the training data, and it can be easily 
interpreted. However, to classify new data, an inference 
mechanism is needed, one which uses elements of the tree to 
classify the data.  FID3.4 uses two different kinds of 
inferences: set-based and exemplar-based. The set-based 
inferences generate fuzzy sets in the leaves, following 
composition along the path from the root. Exemplar-based 
inferences treat each leaf as a super-exemplar. Such exemplar 
can be the most dominant training datum in the leaf, 
or a weighted center of gravity of the data in there, 
etc. [12][16]. 

When a new datum is being classified, it is first matched 
against the tree, using the internal tests, the associated fuzzy 
restrictions, and the T-norms. Because of the nature of the 
fuzzy sets, more than one leaf can get activated, with different 
degree of match. The multiple leaf activations are the so called 
external conflicts. In addition, each leaf may contain training 
data from multiple classes. These are the so called internal 
conflicts. A given inference must specify how to resolve all 
these conflicts.  

In the set-based inferences, there are four different 
external, and four different internal, conflict resolutions: 

1. External resolutions: 
• Average over multiply matched leaves. 
• Do not average over multiple leaves (just operate 

on individual classes). 
• Use only single leaf, the one with the highest 

match to the datum. 
• Max sum gravity. 

2. Internal resolutions: 
• best: use only the best majority class in the leaf. 
• cg: computes center of gravity of the entire leaf. 
• mcg: max-center of gravity method. 
• all: use all decision classes in the leaf. 

In the exemplar-based inferences, there are three different 
external, and four different internal, conflict resolutions: 

1. External resolutions: 



• Use all the matched leaves as exemplars. 
• Look for support for individual decisions 

throughout all matched leaves. 
• Use only the best-matched leaf is the exemplar. 

2. Internal  resolutions: 
• all:  create an exemplar over all data in the leaf. 
• best: create an exemplar over only the data of the 

best class in the leaf. 
• maxx: use the training datum with the highest 

match in the leaf as the exemplar for the leaf. 
• maxxk: same as above but consider only data 

from the majority class in the leaf. 
 

  
Fig. 5 Set-based inference. External: average over multiple leaves. Internal: 

center of gravity of a leaf. 
 

  
Fig. 6 Set-based inference. External: multiple leaves not averaged. Internal:  

all decision classes in a leaf 
 

  
Fig. 7 External: all leaves are exemplars. Internal: exemplar over all examples 

Note that not every internal resolution method can be 
used for a given choice of the external resolution. Illustrations 
of some responses from various inferences are shown in Fig. 
5-8. In all cases the product T-norm was used. As seen, there 
are some differences in the degree of detail. The differences 
are much more profound if the data is noisy or incomplete, as 
seen in the following sections. 
 

  
Fig. 8 External: use only the best leaf. Internal: exemplar over all examples 

 
V. MISSING VALUES 

 In practice, attribute features can often be missing. To 
deal with missing values, we borrow the existing decision tree 
methodology [10]. The best approach is to evenly split an 
example into all children if the needed feature value is not 
available, and then to reduce the attribute’s utilization by the 
percentage of examples with unknown value. We performed 
two tests, with random removal of 10% and 50% of the 
features from the training sets.  

  
Fig. 9 Response curve when trained with 10% of missing values, using set-

based inference.    
 

  
Fig. 10 Response curve when trained with 10% of missing values, using 

exemplar-based inference. 
 
 Fig. 9 and 10 show the responses generated from the tree 
when trained with 10% of missing features while using set-
based and exemplar-based inferences (those illustrated in Fig. 
5 and Fig. 7, respectively). Fig. 11 and Fig. 12 show responses 
generated from the tree when trained with 50% of missing 
features, while using the same two inferences as above. As 
seen, even though the overall function shape is preserved, 
there are some tests with high error (higher in the 50% case). 
One obvious explanation for the errors is that the training was 
done on the 11x11 grid, which meant one data point per fuzzy 
set of the dependent attributes. When values on neighboring 



fuzzy sets are missing, this causes quite a few leaves 
generated without actual data values. When there is more data 
per partitioned set, the results should be even better.  
 

  
Fig. 11 Response curve when trained with 50% of missing values, using set-

based inference.    
 

  
Fig. 12 Response curve when trained with 50% of missing values, using 

exemplar-based inference. 
 

VI. NOISE 

In practice, attribute values (features) can also be 
incorrect, resulting from faulty sensors. There are two 
different cases here. First, if the sensor is completely faulty, it 
would result in random measurements. Second, the sensor can 
be just inaccurate, resulting in some noise superimposed on 
the actual feature value. To illustrate FID’s behavior under 
such conditions, we assumed the first case. Accordingly, we 
performed two tests, randomly replacing 10% and 50% of the 
available features in the training data. The noise was 
uniformly distributed in the domain.  

First, to illustrate the effect of such random noise on the 
function, we illustrate the actual function with the same 
amount of noise added. The resulting function is shown 
in Fig. 13.  

  
Fig. 13 The actual function generated with 10% (left) and 50% (right) of 

random noise. 

As seen, especially with the higher noise the function becomes 
visually lost. 
 Subsequently, we trained FID with such noisy data and 
performed testing of the acquired knowledge when interpreted 
by two different inferences. Fig. 14 shows the response 
generated by the set-based inferences as in Fig. 5. Fig. 15 
shows the response generated by the exemplar-based 
inferences as in Fig. 7. As seen, both inferences are able to 
filter-out the noisy information from the tree. For the used 
conflict resolutions, the exemplar-based inferences seem to 
perform better especially for the 50% case.  
 

  
Fig. 14 Response curve on noisy data, from the set-based inference (10%-left, 

50%-right) 
 

  
Fig. 15 Response curve on noisy data, from the exemplar-based inference 

(10%-left, 50%-right) 
 

VII. PARTITIONING 

When the universe of discourse is not partitioned, it will 
have to be discretized prior to or during tree building. FID can 
perform two kinds of discretizations: local top-down, and 
global bottom-up [14]. Both methods are data driven, and only 
discretize the attributes that need to be partitioned. The 
top-down method starts with a single partition (that is, no 
partitioning) assigned to each applicable attribute, and then 
partitions only the attribute that when partitioned it improves 
the information measure in the node. This is performed while 
building the tree. However, this procedure is not straight 
depth-first traversal, but instead the nodes are placed on 
a priority queue based on the number of data they contain. The 
reason is that each node splitting can result in a new partition 
added (if this improves the information measure), and such 
partitions should be generated based on the maximal amount 
of information available (the number of training data). 
As a result, only the most relevant attributes are partitioned. 



There is a limit on the maximal number of partitions allowed 
on an attribute. 

The bottom-up method works in opposite [14] and has 
opposite properties. It starts with each attribute partitioned to 
sets assigned to individual data points. These detailed 
partitions are later merged, on all attributes being partitioned. 
As a result, all attributes get portioned, but the method is less 
efficient for larger number of data and attributes. There are 
limits on both the minimal and the maximal number of 
partitions per attribute. 

Fig. 16 shows the resulting partitioning of the X attribute 
generated by the top-level method, while Fig. 17 shows the 
same generated by the bottom-up method. Minimum partitions 
were set to 1, maximum to 11 (this was performed with more 
training data to avoid partitioning into one set per data point). 
As seen, both methods generated denser partitions in the 
subdomain where the function changes values most rapidly. 
However, the bottom-up method clearly does it more greedily 
(this can be afforded as the second attribute, Y, was already 
partitioned as in Fig. 2, and thus partitioning of X could 
indeed be more relaxed).  
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Fig. 16 Top-down partitioning on X. 
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Fig. 17 Bottom-up partitioning on X. 
 

Subsequently, we performed top-down partitioning of 
both attributes simultaneously. Fig. 18 presents the resulting 
sets. The generated sets are always trapezoidal. However, the 
shape of the trapezoid is controlled by a parameter. For 
example, in the top-down partitioning, setting the parameter to 
0 results in triangular partitions. Two different results are 
illustrated in Fig. 19 (one internal rule forces the sets to 
always intersect at 0.5, another one allows only neighboring 
sets to intersect).  
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Fig. 18 Top-down partitioning on X and Y. 
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K=0.1 
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K=0.9 

Fig. 19 Different results of partitioning for two different parameter K values. 
 

VIII. PRUNING 

 FID3.4 contains pruning algorithm to prevent overfitting, 
which balances a tradeoff between the size of the tree and its 
predictive accuracy. Pruning is based on a method proposed 
by Quinlan in the C4.5 system [11] and modified to utilize 
fuzzy logic. The only parameter used for pruning is 
a confidence level (CF). 
 The complete tree built from this training data set had 111 
leaves. The response from an un-pruned tree, using the 
set-based inference with the averaging external and best 
internal conflict resolutions, is illustrated in Fig. 20. Note that 
the result is less smooth as compared to that in Fig. 5 – 
the result of a less robust inference method (internal best 
here). 



  
Fig. 20 Response curve from un-pruned tree. 

 
Subsequently, we pruned the tree to reduce the number of 

leaves. The resulting response became less and less robust, as 
illustrated in Fig. 21 and 22.  
 

  
Fig. 21 Pruning; CF=0.2; 61 leaves 

 

  
Fig. 22 Pruning; CF=0.5; 91 leaves 

 
 

IX. SUMMARY 

We have illustrated the FID3.4 classification system here, 
just recently released. The system is a decision tree, utilizing 
fuzzy logic, approximate reasoning methods, as well as 
methods from machine learning. In particular, the system can 
handle data expressed in a mixed language of nominal, fuzzy, 
and continuous domains. It uses a number of T-norms, and 
a number of inferences, based on approximate reasoning and 
on exemplar-based learning. Due to the richness of the 
information processed by some of the inferences, the system 
handles missing features and noise quite robustly, as 
illustrated.  

Finally, FID3.4 includes domain partitioning for 
continuous attributes, as it does a pruning method. 

Other options, not illustrated in the paper, include tests 
for attribute relevancy, thresholds for classifications in leaves 
to be considered in the inferences, gradually relaxed 
classification means if a test datum is not classified, etc. More 
information can be found at the User’s Manual, available from 
http://www.cs.umsl.edu/~janikow/fid. 
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