
Fuzzy Decision Tree FID

Cezary Z. Janikow Krzysztof Kawa
Math & Computer Science Department Math & Computer Science Department

University of Missouri – St. Louis University of Missouri – St. Louis
St. Louis, MO 63121, USA St. Louis, MO 63121, USA

janikow@umsl.edu kk7b2@umsl.edu

 Abstract - FID Fuzzy Decision Tree has been introduced in
1996. It is a classification system, implementing the popular and
efficient recursive partitioning technique of decision trees, while
combining fuzzy representation and approximate reasoning for
dealing with noise and language uncertainty. Since its
introduction, various extensions have been proposed,
implemented, and presented, with the most recent revision
FID3.4 just released. This paper illustrates its processing using
a standard example.

I. INTRODUCTION

 Today, computer programs extracting knowledge from
data successfully attempt alleviate the knowledge engineering
bottleneck problem [1]. Supervised classification programs
extract some form of knowledge from training data with
known classifications. The knowledge is often in the form of
an explicit data structure with some inference method. Among
such systems, those building decision trees are very popular,
due to their conformity, comprehensibility, accuracy, and low
complexity [9][11].
 Decision trees implement the so called recursive
portioning algorithm, which is a data-driven technique for
building tree-based knowledge models [9]. The algorithm
starts with all the training data in the root node, and it
recursively selects a test, based on the available attributes, to
split the node. The selected test is the one that maximizes
some measure, such as the information gain [9][11]. The
splitting stops based on a number of potential criteria, such as
exhausted test attributes or exhausted data samples, and just to
avoid overspecialization [11]. The tree can subsequently be
visualized to provide meaningful comprehensible information
about the domain, or it can be used for classification when
coupled with a simple inference procedure – match a new
datum against the tree, select the leaf that matches it, and
report the decision associated with that leaf.

Neural networks are as attractive for data classification.
They provide more robust behavior, but lack similar levels of
comprehensibility [2]. A fuzzy approach attempts to bridge
the gap between incomprehensible quantitative processing and
comprehensible qualitative processing. Fuzzy sets provide
basis for fuzzy representation [3]. Fuzzy sets and fuzzy logic
allow the modeling of language-related uncertainties, while
providing a symbolic framework for knowledge comprehensi-
bility [4][5][6]. In fuzzy rule-based systems, the symbolic
rules provide for ease of understanding and/or transfer of
high-level knowledge, while the fuzzy sets, along with fuzzy
logic and approximate reasoning methods, provide the ability

to model fine knowledge details [6]. Thus fuzzy
representation provides means for dealing with problems of
uncertainty, noise, and inexact data [7]. It has been
successfully applied to problems in many industrial areas [8].

Fuzzy Decision Tree (FID) combines fuzzy
representation, and its approximate reasoning, with symbolic
decision trees. As such, they provide for handling of language
related uncertainty, noise, missing or faulty features, robust
behavior, while also providing comprehensible knowledge
interpretation. FID has three major components: one for
partitioning continuous attributes, one for building an explicit
tree, and one for knowledge inference from the tree. In this
paper, we illustrate these components, along with some
additional capabilities.

II. DATA

Fig. 1 The original function.

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2 Partitions of variables X and Y.

For illustration, we are using the function z = -sin(xy)+1

taken from [18]. Having a function with only 2 independent
attributes allows us to graphically illustrate the acquired
knowledge. The X and Y domains are 0..pi. Unless otherwise
noted, the independent attributes and the class (Z) are
partitioned as illustrated in Fig. 2 (normalized scale). The
training is performed with data from the 11 x 11 grid, while
the acquired knowledge is generated by sampling the 101x101

grid. Of course, the acquired knowledge depends on both the
generated tree and the inference method used for testing –
several inferences are illustrated.

III. FUZZY SETS, NORMS, AND THE INPUT LANGUAGE

In classical set theory, given some universe of discourse,
an element either belongs to a set or it does not. Such sets can
be described with binary characteristic functions. However, in
the real world there are many sets for which it is difficult or
even impossible to determine if an element belongs to such
sets. For example, this information might not be available, or
the set itself may be ambiguous due to the linguistic
interpretation of its label. Fuzzy sets have been proposed to
deal with such cases. A fuzzy set is represented by linguistic
label and a membership function onto the real interval [12].
The partitions of Fig. 2 are examples of triangular fuzzy sets.
In the figure, an element with the normalized value 0.05
would have memberships in both two leftmost sets equal to ½.

Similar to the basic operations of union, intersection, and
complement defined in classical set theory (which can all be
defined with the characteristic function only), such operations
are defined for fuzzy sets. Functions used to interpret
intersection are denoted as T-norms, and functions for union
are denoted as S-norms. Originally proposed by Zadeh, min
and max operators for intersection and union, respectively,
define the most optimistic and the most pessimistic norms for
the two cases.

Fig. 3 Response curve under the minimum norm

Fig. 4 Response curve under the bounded product norm

A decision tree has some attribute tested in each of its

internal nodes, and has classification decisions associated with
the leaves. The test in a given node is interpreted as a fuzzy
restriction, and its satisfaction is computed based on the
attribute value of a sample. When moving down a path, the
degrees of satisfaction of the fuzzy restrictions are

accumulated according to the fuzzy T-norms. In FID,
minimum, product, bounded product and drastic product can
be selected. There is also the ‘best’ option, which chooses the
best of the above. Fig. 3 and Fig. 4 illustrate the difference
between two different T-norms.

FID processes data expressed with a mixture of nominal
and continuous attributes. The continuous attributes can be
partitioned or not, and some features can be missing. For
example, assuming attributes Income (partitioned, with
linguistic labels Low, Medium, High), Employment (expressed
as the number of hours per week), nominal Sex, and
classification for Credit (score 0-100, partitioned with three
labels No, Maybe, Yes), the following are examples of
possible training data:
John: Income=12500, Employment=24, Sex=M, Credit=No
Susan: Income=Medium, Employment=?, Sex=F, Credit=25

IV. INFERENCES

The tree is built for the training data, and it can be easily
interpreted. However, to classify new data, an inference
mechanism is needed, one which uses elements of the tree to
classify the data. FID3.4 uses two different kinds of
inferences: set-based and exemplar-based. The set-based
inferences generate fuzzy sets in the leaves, following
composition along the path from the root. Exemplar-based
inferences treat each leaf as a super-exemplar. Such exemplar
can be the most dominant training datum in the leaf,
or a weighted center of gravity of the data in there,
etc. [12][16].

When a new datum is being classified, it is first matched
against the tree, using the internal tests, the associated fuzzy
restrictions, and the T-norms. Because of the nature of the
fuzzy sets, more than one leaf can get activated, with different
degree of match. The multiple leaf activations are the so called
external conflicts. In addition, each leaf may contain training
data from multiple classes. These are the so called internal
conflicts. A given inference must specify how to resolve all
these conflicts.

In the set-based inferences, there are four different
external, and four different internal, conflict resolutions:

1. External resolutions:
• Average over multiply matched leaves.
• Do not average over multiple leaves (just operate

on individual classes).
• Use only single leaf, the one with the highest

match to the datum.
• Max sum gravity.

2. Internal resolutions:
• best: use only the best majority class in the leaf.
• cg: computes center of gravity of the entire leaf.
• mcg: max-center of gravity method.
• all: use all decision classes in the leaf.

In the exemplar-based inferences, there are three different
external, and four different internal, conflict resolutions:

1. External resolutions:

• Use all the matched leaves as exemplars.
• Look for support for individual decisions

throughout all matched leaves.
• Use only the best-matched leaf is the exemplar.

2. Internal resolutions:
• all: create an exemplar over all data in the leaf.
• best: create an exemplar over only the data of the

best class in the leaf.
• maxx: use the training datum with the highest

match in the leaf as the exemplar for the leaf.
• maxxk: same as above but consider only data

from the majority class in the leaf.

Fig. 5 Set-based inference. External: average over multiple leaves. Internal:

center of gravity of a leaf.

Fig. 6 Set-based inference. External: multiple leaves not averaged. Internal:

all decision classes in a leaf

Fig. 7 External: all leaves are exemplars. Internal: exemplar over all examples

Note that not every internal resolution method can be
used for a given choice of the external resolution. Illustrations
of some responses from various inferences are shown in Fig.
5-8. In all cases the product T-norm was used. As seen, there
are some differences in the degree of detail. The differences
are much more profound if the data is noisy or incomplete, as
seen in the following sections.

Fig. 8 External: use only the best leaf. Internal: exemplar over all examples

V. MISSING VALUES

 In practice, attribute features can often be missing. To
deal with missing values, we borrow the existing decision tree
methodology [10]. The best approach is to evenly split an
example into all children if the needed feature value is not
available, and then to reduce the attribute’s utilization by the
percentage of examples with unknown value. We performed
two tests, with random removal of 10% and 50% of the
features from the training sets.

Fig. 9 Response curve when trained with 10% of missing values, using set-

based inference.

Fig. 10 Response curve when trained with 10% of missing values, using

exemplar-based inference.

 Fig. 9 and 10 show the responses generated from the tree
when trained with 10% of missing features while using set-
based and exemplar-based inferences (those illustrated in Fig.
5 and Fig. 7, respectively). Fig. 11 and Fig. 12 show responses
generated from the tree when trained with 50% of missing
features, while using the same two inferences as above. As
seen, even though the overall function shape is preserved,
there are some tests with high error (higher in the 50% case).
One obvious explanation for the errors is that the training was
done on the 11x11 grid, which meant one data point per fuzzy
set of the dependent attributes. When values on neighboring

fuzzy sets are missing, this causes quite a few leaves
generated without actual data values. When there is more data
per partitioned set, the results should be even better.

Fig. 11 Response curve when trained with 50% of missing values, using set-

based inference.

Fig. 12 Response curve when trained with 50% of missing values, using

exemplar-based inference.

VI. NOISE

In practice, attribute values (features) can also be
incorrect, resulting from faulty sensors. There are two
different cases here. First, if the sensor is completely faulty, it
would result in random measurements. Second, the sensor can
be just inaccurate, resulting in some noise superimposed on
the actual feature value. To illustrate FID’s behavior under
such conditions, we assumed the first case. Accordingly, we
performed two tests, randomly replacing 10% and 50% of the
available features in the training data. The noise was
uniformly distributed in the domain.

First, to illustrate the effect of such random noise on the
function, we illustrate the actual function with the same
amount of noise added. The resulting function is shown
in Fig. 13.

Fig. 13 The actual function generated with 10% (left) and 50% (right) of

random noise.

As seen, especially with the higher noise the function becomes
visually lost.
 Subsequently, we trained FID with such noisy data and
performed testing of the acquired knowledge when interpreted
by two different inferences. Fig. 14 shows the response
generated by the set-based inferences as in Fig. 5. Fig. 15
shows the response generated by the exemplar-based
inferences as in Fig. 7. As seen, both inferences are able to
filter-out the noisy information from the tree. For the used
conflict resolutions, the exemplar-based inferences seem to
perform better especially for the 50% case.

Fig. 14 Response curve on noisy data, from the set-based inference (10%-left,

50%-right)

Fig. 15 Response curve on noisy data, from the exemplar-based inference

(10%-left, 50%-right)

VII. PARTITIONING

When the universe of discourse is not partitioned, it will
have to be discretized prior to or during tree building. FID can
perform two kinds of discretizations: local top-down, and
global bottom-up [14]. Both methods are data driven, and only
discretize the attributes that need to be partitioned. The
top-down method starts with a single partition (that is, no
partitioning) assigned to each applicable attribute, and then
partitions only the attribute that when partitioned it improves
the information measure in the node. This is performed while
building the tree. However, this procedure is not straight
depth-first traversal, but instead the nodes are placed on
a priority queue based on the number of data they contain. The
reason is that each node splitting can result in a new partition
added (if this improves the information measure), and such
partitions should be generated based on the maximal amount
of information available (the number of training data).
As a result, only the most relevant attributes are partitioned.

There is a limit on the maximal number of partitions allowed
on an attribute.

The bottom-up method works in opposite [14] and has
opposite properties. It starts with each attribute partitioned to
sets assigned to individual data points. These detailed
partitions are later merged, on all attributes being partitioned.
As a result, all attributes get portioned, but the method is less
efficient for larger number of data and attributes. There are
limits on both the minimal and the maximal number of
partitions per attribute.

Fig. 16 shows the resulting partitioning of the X attribute
generated by the top-level method, while Fig. 17 shows the
same generated by the bottom-up method. Minimum partitions
were set to 1, maximum to 11 (this was performed with more
training data to avoid partitioning into one set per data point).
As seen, both methods generated denser partitions in the
subdomain where the function changes values most rapidly.
However, the bottom-up method clearly does it more greedily
(this can be afforded as the second attribute, Y, was already
partitioned as in Fig. 2, and thus partitioning of X could
indeed be more relaxed).

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 16 Top-down partitioning on X.

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 17 Bottom-up partitioning on X.

Subsequently, we performed top-down partitioning of
both attributes simultaneously. Fig. 18 presents the resulting
sets. The generated sets are always trapezoidal. However, the
shape of the trapezoid is controlled by a parameter. For
example, in the top-down partitioning, setting the parameter to
0 results in triangular partitions. Two different results are
illustrated in Fig. 19 (one internal rule forces the sets to
always intersect at 0.5, another one allows only neighboring
sets to intersect).

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 18 Top-down partitioning on X and Y.

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K=0.1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K=0.9

Fig. 19 Different results of partitioning for two different parameter K values.

VIII. PRUNING

 FID3.4 contains pruning algorithm to prevent overfitting,
which balances a tradeoff between the size of the tree and its
predictive accuracy. Pruning is based on a method proposed
by Quinlan in the C4.5 system [11] and modified to utilize
fuzzy logic. The only parameter used for pruning is
a confidence level (CF).
 The complete tree built from this training data set had 111
leaves. The response from an un-pruned tree, using the
set-based inference with the averaging external and best
internal conflict resolutions, is illustrated in Fig. 20. Note that
the result is less smooth as compared to that in Fig. 5 –
the result of a less robust inference method (internal best
here).

Fig. 20 Response curve from un-pruned tree.

Subsequently, we pruned the tree to reduce the number of

leaves. The resulting response became less and less robust, as
illustrated in Fig. 21 and 22.

Fig. 21 Pruning; CF=0.2; 61 leaves

Fig. 22 Pruning; CF=0.5; 91 leaves

IX. SUMMARY

We have illustrated the FID3.4 classification system here,
just recently released. The system is a decision tree, utilizing
fuzzy logic, approximate reasoning methods, as well as
methods from machine learning. In particular, the system can
handle data expressed in a mixed language of nominal, fuzzy,
and continuous domains. It uses a number of T-norms, and
a number of inferences, based on approximate reasoning and
on exemplar-based learning. Due to the richness of the
information processed by some of the inferences, the system
handles missing features and noise quite robustly, as
illustrated.

Finally, FID3.4 includes domain partitioning for
continuous attributes, as it does a pruning method.

Other options, not illustrated in the paper, include tests
for attribute relevancy, thresholds for classifications in leaves
to be considered in the inferences, gradually relaxed
classification means if a test datum is not classified, etc. More
information can be found at the User’s Manual, available from
http://www.cs.umsl.edu/~janikow/fid.

X. BIBLIOGRAPHY
[1] R.S. Michalski, “Understanding the nature of learning”, In Machine

Learning: An Artificial Intelligence Approach, R. Michalski,
J. Carbonell & T. Mitchell (eds.), Vol, II, pp. 3-26. Morgan Kaufmann,
1986

[2] S. Sestino & T. Dillon, “Using single-layered neural networks for the
extraction of conjunctive rules and hierarchical classifications”, Journal
of Applied Intelligence 1, pp. 157- 173, 1991.

[3] L.A. Zadeh, “Fuzzy sets”, Information and Control 8 (1965), pp. 338-
353.

[4] L.A. Zadeh, “Fuzzy logic and approximate reasoning”, Synthese 30
(1975), pp. 407-428.

[5] L.A. Zadeh, “A theory of approximate teasoning”, In Hayes, Michie &
Mikulich (eds) Machine Intelligence 9 (1979), pp. 149-194.

[6] L.A. Zadeh, “The role of fuzzy logic in the management of uncertainity
in expert systems”, Fuzzy Sets and Systems, 11, 1983, pp. 199-227.

[7] D. McNeill & P. Freiberger, “Fuzzy logic”, Simon & Schuster, 1993.
[8] A. Kandel & G. Langholz (eds.), “Fuzzy control systems”, CRC, 1993.
[9] J.R. Quinlan, “Induction on decision trees”, Machine Learning, Vol. 1,

1986, pp. 81-106.
[10] J.R. Quinlan, “Unknown attribute-values in induction”, In Proceedings

of the Sixth International Workshop on Machine Learning, 1989, pp.
164-168.

[11] J.R. Quinlan, C4.5: “Programs for machine learning”, Morgan
Kaufmann, San Mateo, CA. 1993.

[12] C.Z. Janikow, “Fuzzy decision trees: issues and methods”, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 28, Issue 1, pp. 1-
14. 1998.

[13] C.Z. Janikow, M. Fajfer, “Fuzzy partitioning with FID3.1”, Proceedings
of the 18th International Conference of the North American Fuzzy
Information Society, NY 1999, pp. 467-471.

[14] M. Fajfer, C.Z. Janikow, “Bottom-up partitioning in fuzzy decision
trees”, Proceedings of the 19th International Conference of the North
American Fuzzy Information Society, Atlanta 2000, pp. 326-330.

[15] Cezary Z. Janikow, “Fuzzy decision forest”, Proceedings of 22nd
International Conference of the North American Fuzzy Information
Processing Society, Chicago 2003, pp. 480-483.

[16] Cezary Z. Janikow, “FID4.1: an overview”, Proceedings of NAFIPS
2004, pp. 877-881.

[17] J.R. Quinlan, “The effect of noise on concept learning”, Machine
Learning II, R. Michalski, J. Carbonell & T. Mitchell (eds), Morgan
Kaufmann, 1986.

[18] J. F. Baldwin and Dong (Walter) Xie, “Simple fuzzy logic rules based on
fuzzy decision tree for classification and prediction problem”, Intelligent
Information Processing (IIP) II, Beijing, China , pp 175-184, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

